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Abstract
We apply a newly proposed Monte Carlo method, the Wang–Landau algorithm,
to the study of the three-dimensional antiferromagneticq-state Potts models on a
simple cubic lattice. We systematically study the phase transition of the models
with q = 3, 4, 5 and 6. We obtain the finite-temperature phase transition for
q = 3 and 4, whereas the transition temperature is down to zero for q = 5. For
q = 6 there exists no order for any temperature. We also study the ground-state
properties. The size dependence of the ground-state entropy is investigated.
We find that the ground-state entropy is larger than the contribution from the
typical configurations of the broken-sublattice-symmetry state for q = 3. The
same situations are found for q = 4, 5 and 6.

PACS numbers: 75.10.Hk, 05.10.Ln, 05.50.+q

1. Introduction

The q-state Potts model has various interesting properties to study [1–3]. The order of the
phase transition of the Potts model depends on the spatial dimensionality and the number of
states, q. The phase transitions of the antiferromagnetic (AF) Potts models are more complex
than those of the ferromagnetic Potts models. Here, we focus on the three-dimensional AF
q-state Potts models. Banavar et al [4] studied the AF three- and four-state Potts models by
use of the Monte Carlo simulation. Ono [5] pointed out an appropriate choice of the vector
order parameter for the AF Potts models on a bipartite lattice. The phase transition of the
AF three-state Potts model is considered to belong to the XY universality class [6, 7]. The
low-temperature phase of the AF three-state Potts model was shown to be the broken-sublattice-
symmetry (BSS) state, but it is still an open question whether a rotationally symmetric state
exists or not below the second-order phase transition point of theXY universality class [8–11].
Compared with the AF three-state Potts model, there not have been so many systematic studies
on the AF four-state and higher-state Potts models in three dimensions. Recently, the AF four-
state Potts model was studied by Itakura [12]; there is a finite-temperature phase transition, and
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the critical phenomena may belong to the Heisenberg universality class if the phase transition
is of second order. However, the possibility of a first-order transition was also argued [12].
Another source of interest in AF q-state Potts models is that they have nonzero ground-state
entropy without frustration. Nonzero ground-state entropy, S0 �= 0, is an important subject in
statistical mechanics. One physical example is provided by ice. The AF Potts model serves
as a useful model for the study of the nonzero ground-state entropy, and the nonzero ground-
state entropy of the two-dimensional AF Potts model was extensively studied by Shrock and
Tsai [13].

Monte Carlo simulation is regarded as a standard tool for studying statistical mechanical
properties [14]. The Monte Carlo study using a conventional Metropolis algorithm sometimes
suffers from the problem of slow dynamics, or the long-timescale problem. In the study of the
phase transition, the long timescale due to the critical slowing-down causes the problem of slow
equilibration. For the simulational study of the AF Potts models, the cluster algorithm [15]
has been used [6, 7, 9, 10, 12] to overcome the critical slowing-down. As an extension of
the cluster algorithm, Tomita and Okabe [16] recently proposed a new cluster algorithm
of tuning the critical point automatically, and applied it to the study of 2D Potts models.
The extended ensemble method is another type of attempt to overcome the slow dynamics.
The multicanonical method [17, 18], simulated tempering [19], the exchange Monte Carlo
method [20] (or the multiple-Markov-chain method [21]), the broad-histogram method [22]
and the flat-histogram method [23] are examples of the extended ensemble method. Quite
recently, Wang and Landau [24] proposed an efficient algorithm to calculate the density of
states with high accuracy. In the present paper we use the Wang–Landau algorithm [24] to
study the three-dimensional AF Potts models. We study not only the phase transition of the
AF Potts models but also the ground-state properties. The Wang–Landau algorithm is quite
effective for this purpose because we can calculate the density of states with high accuracy. We
make a random walk in the whole energy space, and the algorithm is appropriate for calculating
the ground-state entropy.

We organize the rest of the paper as follows. In section 2, we describe the model and the
vector order parameter for the AF Potts model. We also briefly explain the simulation method,
the Wang–Landau algorithm. In section 3, we study the phase transition of the AF three-,
four-, five- and six-state Potts models on a simple cubic lattice. The ground-state properties
of the three-, four-, five- and six-state Potts models are studied in section 4. The summary and
discussions are given in section 5.

2. Model and simulation method

We deal with the AF Potts model defined by the Hamiltonian

H = J
∑
〈i,j〉

δσi ,σj (J > 0) (1)

where the Potts variable σi takes the value 1, 2, . . . , q, and the summation is taken over the
nearest-neighbour pairs of sites on a simple cubic lattice.

The ferromagnetic three-state Potts model can be transformed into the Z3 clock model,
and the order parameter is well represented by a two-dimensional vector. For the AF Potts
model on a bipartite lattice, the sublattice structure should be taken into account [5, 25]; that
is, the staggered magnetization will be treated. Using three components of the staggered
magnetization

mi = 1

N

( ∑
j∈A

δσj ,i −
∑
j∈B

δσj ,i

)
(2)
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where A and B denote two sublattices, we define the vector order parameter as follows:

M ≡ m1e1 + m2e2 + m3e3. (3)

Here, ei denotes the unit vectors in two dimensions directed 120◦ apart from each other, and

e1 + e2 + e3 = 0. (4)

Then, the square of the vector order parameter simply becomes

M 2 = 3
2

(
m2

1 + m2
2 + m2

3

)
. (5)

We can extend the above argument to higher-state Potts models [5]. In general the order
parameter of the q-state Potts model is well described by the (q− 1)-dimensional vector order
parameter. We consider the unit vectors in (q − 1) dimensions pointing to q directions as
in the case of the three-state Potts model; the sum of the unit vectors is set to be zero as in
equation (4). Using each component of the staggered magnetization, equation (2), we can
obtain the generalized expression for equation (5)

M 2 = q

q − 1

(
m2

1 + m2
2 + · · · + m2

q

)
. (6)

We should note that for the three-state Potts model the vector order parameter space spans a
hexagonal region in a two-dimensional space, and the maximum value of |M | is

√
3/2. For

the four-state Potts model the order parameter takes the values within the area shown in figure 3
of [12], and the maximum value of |M | is

√
2/3.

We briefly describe the Wang–Landau algorithm [24]. This algorithm is similar to
Lee’s version of the multicanonical method (entropic sampling) [18], the broad-histogram
method [22] and the flat-histogram method [23]; but the Wang–Landau algorithm has advantage
that it can estimate the density of states efficiently even for large systems. The idea of the
Wang–Landau algorithm [24] is that we make a random walk in energy space based on the
transition probability from energy level E1 to E2

p(E1 → E2) = min

[
g(E1)

g(E2)
, 1

]
(7)

where g(E) is the density of states. Since the exact form of g(E) is not known a priori, we
determine g(E) iteratively; g(E) is modified by

ln g(E) → ln g(E) + ln fi (8)

every time the state is visited. The modification factor fi is gradually reduced to unity by
checking the ‘flatness’ of the energy histogram; the histogram for all possible E is not less
than some value of the average histogram, say, 80%.

We simulate the AF q-state Potts model (q = 3, 4, 5, 6) on a simple cubic lattice by using
the Wang–Landau algorithm [24]. We impose the periodic boundary conditions and the linear
sizes are L = 8, 10, 12, 14 and 16. For the modification factor fi , we start with f0 = ek with
k = 1 or some positive integer, and fi+1 = √

fi ; the final value of ln fi is chosen as 10−8,
which is the same as [24]. We calculate the density of states g(E), and measure the physical
quantities of interest as a function of E. Then, the canonical average of the physical quantity
Q at the inverse temperature β = 1/kBT is calculated through the standard relation

〈Q〉β =
∫
Q(E)g(E)e−βE dE∫
g(E)e−βE dE

. (9)

In the actual calculation, the relative density of states, g(E1)/g(E2), is directly obtained. In
terms of the entropy (in units of kB), S(E) = ln g(E), the entropy difference, S(E1)− S(E2),
is directly measured. Imposing the constraint∑

E

g(E) = qN (10)
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we can determine the absolute value of g(E). Here,N(= L3) is the number of lattice sites, that
is the number of Potts spins. For the AF Potts model on a simple cubic lattice, equation (1),
the energy E takes a value from zero to 3N in units of J . The state with the highest energy
E = 3N is nothing but the ferromagnetic ground state, and the degeneracy of the ferromagnetic
ground states is q. Therefore, we may check the accuracy of the calculation by confirming
g(3N) = q.

3. Phase transitions of AF Potts model

First, we study the phase transition of the AF Potts model with q = 3, 4, 5 and 6. Let us
start with showing the data for q = 3 in order to make a comparison with higher-state models,
although the phase transition of the three-state Potts model has been studied extensively [6–10].
The temperature dependence of 〈M 2〉 for q = 3 is shown in figure 1(a). The data for L = 8,
10, 12, 14 and 16 are plotted by the dot–dashed, dashed, short-dashed, dotted and solid curves,
respectively. The temperature is represented in units of J/kB. All the measurements are
made for four independent runs, and the average is taken over four samples. The normalized
fourth-order cumulant of the magnetization, the Binder parameter [26]

g = q + 1

2

(
1 − q − 1

q + 1

〈M 4〉
〈M 2〉2

)
(11)

is plotted in figure 1(b). The normalization factors in equation (11) are chosen such that

g →
{

1 for T = 0

0 for T = ∞ (12)

by taking account of the (q − 1)-dimensional vector structure of the order parameter. The
definition of equation (11) becomes a usual one for the scalar order parameter (q = 2). Since
the prefactors of the L dependence in the finite-size scaling equations are cancelled out, one
may determine the critical temperature Tc from the crossing point of the data of temperature
dependence for different sizes as long as the corrections to finite-size scaling are negligible.
We also plot the specific heat in figure 1(c). The specific heat peak becomes sharper when
the system size is larger. From figures 1(a)–(c), we find a clear phase transition at a finite
temperature.

The finite-size scaling plots of the order parameter, and the Binder parameter

〈M 2〉 = L−2β/νf
(
(T − Tc)L

1/ν
)

(13)

g = g
(
(T − Tc)L

1/ν
)

(14)

are given in figures 2(a) and (b), respectively. The estimated values for the critical temperature
and the critical exponents are Tc = 1.222(4), 1/ν = 1.52(4) and β/ν = 0.46(5). Here, the
number in the parentheses denotes the uncertainty in the last digit. The estimated values are
consistent with the previous studies [6–9], and the obtained exponents are close to those of the
three-dimensionalXY model. We have given the estimate using the finite-size scaling analysis
to check the consistency of the calculation. Precisely speaking, due to small system sizes, our
estimate of Tc is a little lower than the accurate estimate [6, 7], which results in a slightly
smaller β/ν. To discuss more accurate estimates of Tc and the critical exponents, calculations
with larger system sizes are preferable.

It is not easy to estimate the specific heat exponent α from the specific heat data using the
finite-size scaling analysis if α is negative [6]. We may use the temperature derivative of the
specific heat, which is singular at Tc even if α is negative. We plot the temperature derivative
of the specific heat in figure 3. Since we directly calculate the density of states by using the
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Figure 1. Temperature dependence of the squared order parameter (a), the Binder parameter (b)
and the specific heat (c) for the three-dimensional AF three-state Potts model. The linear system
sizes are L = 8, 10, 12, 14 and 16. The dot–dashed, dashed, short-dashed, dotted and solid curves
are used for L = 8, 10, 12, 14 and 16, respectively. The temperature is represented in units of
J/kB.

Wang–Landau algorithm, it is easy to compute the temperature derivative of the specific heat
from the moments of energy. Using the finite-size scaling relation

dC

dT
= L(α+1)/νf

(
(T − Tc)L

1/ν
)

(15)

we estimate the exponent α as −0.04(6). Although our estimate has a relatively large error
bar due to the small system size, our result suggests that α is negative.

Next we turn to the four-state Potts model. We plot the temperature dependence of the
order parameter and the Binder parameter in figures 4(a) and (b), respectively. We also show
the specific heat in figure 4(c). We make a comment here on the statistical errors for the
estimate of the density of states. They become larger for higher q and larger L. The errors
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1

2
q=3     (a)

<
M

2 >
 L

2 
β 

/ ν

– 2
0.4

0.6

0.8

1
q=3     (b)

g

(T  Tc) L
1 / ν

−

Figure 2. Scaling plots of the order parameter (a) and the Binder parameter (b) for the three-
dimensional AF three-state Potts model. The linear system sizes are L = 8, 10, 12, 14 and 16. The
estimated values for the critical temperature and the critical exponents are Tc = 1.222, 1/ν = 1.52
and β/ν = 0.46.

1 1.25 1.5
–10

–5

0

5
q=3

T

dC

L=16

L=8

dT

Figure 3. Temperature derivative of the specific heat for the three-dimensional AF three-state Potts
model. The linear system sizes are L = 8, 10, 12, 14 and 16.

for the specific heat curve for larger L are larger than the thickness of the curve in figure 4(c).
From figure 4 we find that there exits a clear finite-temperature phase transition. The finite-
size scaling plots of the order parameter and the Binder parameter are given in figures 5(a)
and (b), respectively; we estimate Tc, 1/ν and β/ν as 0.669(4), 1.41(4) and 0.44(6). These are
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Figure 4. Temperature dependence of the squared order parameter (a), the Binder parameter (b)
and the specific heat (c) for the three-dimensional AF four-state Potts model. The linear system
sizes are L = 8, 10, 12, 14 and 16. The temperature is represented in units of J/kB.

compatible with the previous study [12], and the obtained exponents are close to those of the
three-dimensional Heisenberg model. Precisely, our estimate of Tc is a little lower than the
accurate estimate [12]; the situation is the same as the case of q = 3.

The order parameter, the Binder parameter and the specific heat for the five-state Potts
model are given in figures 6(a)–(c), respectively. There is no anomaly in the specific heat.
There is no crossing in the Binder parameter at finite temperatures. The critical temperature is
down to zero. However, the value of the Binder parameter at T = 0 is finite, and it may become
constant for large enough L; it is not clear whether T = 0 is critical or not. To determine this
point, more elaborate studies with larger sizes are necessary.

We show the order parameter, the Binder parameter and the specific heat for the six-state
Potts model in figures 7(a)–(c), respectively. In this case, the maximum linear size is L = 14.
There is no anomaly in the specific heat. The value of the Binder parameter at T = 0 is very
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Figure 5. Scaling plots of the order parameter (a) and the Binder parameter (b) for the three-
dimensional AF four-state Potts model. The linear system sizes are L = 8, 10, 12, 14 and 16. The
estimated values for the critical temperature and the critical exponents are Tc = 0.669, 1/ν = 1.41
and β/ν = 0.44.

small. This means that the distribution of the order parameter is Gaussian; in other words, the
system is disordered. We may conclude that there is no order even at T = 0.

4. Ground-state properties

In this section, we focus on the ground-state properties of the AF Potts models. First, we
consider the ground-state entropy per spin, S0/N ; the entropy (in units of kB) is calculated
through S0 = ln g(0).

In figure 8, we show the size dependence of the ground-state entropy per spin for the
q-state AF Potts model on a simple cubic lattice. We plot S0/N as a function of 1/N , and find
a linear 1/N dependence. Using the least-squares method, for q = 3 we have

S0/N = 0.3670(1) + 1.97(4)× (1/N) q = 3 (16)

where the number in the parentheses denotes the uncertainty in the last digit. Wang et al [6]
estimated the ground-state entropy per spin (N → ∞) as 0.3673 from the data ofL = 4 and 8.
Our estimate, 0.3670, is a little smaller than their estimate. The low-temperature phase of the
AF three-state Potts model is the BSS state. The typical configuration of the BSS state is that all
the spins on the sublattice A take one of the three states, and the spins on sublattice B take one
of the other two states randomly. Then, the lower bound for the ground-state entropy becomes
S0/N � (ln 2)/2 + ln 6 × (1/N) = 0.3466 + 1.79 × (1/N). Our estimate, equation (16), is,
of course, larger than the lower bound. That is, there are many configurations other than the
typical configurations of the BSS state.
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Figure 6. Temperature dependence of the squared order parameter (a), the Binder parameter (b)
and the specific heat (c) for the three-dimensional AF five-state Potts model. The linear system
sizes are L = 8, 10, 12, 14 and 16. The temperature is represented in units of J/kB.

From the linear 1/N dependence for the AF four-state Potts model, we have

S0/N = 0.7148(1) + 1.92(6)× (1/N) q = 4. (17)

As far as we know, there has been no study on the estimate of the ground-state entropy for
q = 4 and higher q. For the low-temperature phase of the four-state Potts model, the typical
spin configuration is as follows: the spins on sublattice A take two of four states randomly,
whereas those on sublattice B take the other two states. Then, the lower bound for the ground-
state entropy becomes S0/N � ln 2 + ln 6 × (1/N) = 0.6931 + 1.79 × (1/N). Our estimate,
equation (17), is again larger than the lower bound.

From the size dependence of the ground-state entropy for the AF five-state Potts model,
which is also shown in figure 8, we have

S0/N = 0.9997(1) + 2.03(6)× (1/N) q = 5. (18)

The main contribution to the low-temperature phase of the five-state Potts model is as follows:
the spins on sublattice A take two of five states randomly, whereas those on sublattice B
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Figure 7. Temperature dependence of the squared order parameter (a), the Binder parameter (b)
and the specific heat (c) for the three-dimensional AF six-state Potts model. The linear system
sizes are L = 8, 10, 12 and 14. The temperature is represented in units of J/kB.

take the other three states. Then, the lower bound for the ground-state entropy becomes
S0/N � (ln 6)/2 + 2 ln 5 × (1/N) = 0.8959 + 3.00 × (1/N). Our estimate, equation (18), is
again larger than the lower bound.

Finally, for q = 6 we have

S0/N = 1.2717(1) + 0.17(4)× (1/N) q = 6 (19)

by using the least-squares method. The main contribution of the six-state Potts model is as
follows: the spins on sublattice A take three of six states randomly, whereas those on sublattice
B take the other three states. Our estimate, equation (19), is again larger than the lower bound
for the ground-state entropy; S0/N � ln 3 + 2 ln 5 × (1/N) = 1.0986 + 3.00 × (1/N).

It is interesting to note that the ground-state entropy has a similar 1/N dependence for all
q = 3, 4 and 5, although there occurs a finite-temperature phase transition for q = 3 and 4
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Figure 8. Size dependence of the ground-state entropy per spin for the three-dimensional AF
q-state Potts models; q = 3, 4, 5 and 6. The linear system sizes are L = 8, 10, 12, 14 and 16 for
q = 3–5 and L = 8, 10, 12 and 14 for q = 6; N = L3.

and a zero-temperature phase transition for q = 5. The size dependence of q = 6 is similar to
that for q = 3, 4 and 5, but the slope of the 1/N dependence for q = 6 is smaller than that of
others. It is not clear whether this small difference is related to the existence of the AF order.

We find that the ground-state entropy is larger than the contribution from the typical
configurations of the BSS state. In order to look into the ground-state properties more
carefully, let us consider the proportion of visiting the typical BSS ground states among
all the ground states. As an example, we treat the case of q = 3. Since this proportion
becomes very small for larger sizes, we have checked it for a smaller system, that is, L = 6.
The estimate of the ground-state entropy per spin S0/N for L = 6 is 0.376. Thus, the
expected value for the proportion of the typical BSS ground states among all the ground states
is 6 · 2(N/2)/e0.376N = 0.010 (N = 216). Actually, the typical BSS ground states were visited
0.010 times as frequently as all the ground states, which is consistent with the theoretical
expectation. In other words, we sample ground states uniformly.

Next we study the distribution of the ground states. As an example, we again deal with the
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Figure 9. Distribution function P(x) for the ground states of the three-dimensional AF 3-state
Potts models. Here x stands for nA,B

i (i = 1, 2, 3), the number of each component per spin on
sublattice A or B. The linear system sizes are L = 8, 10, 12, 14 and 16. The same types of curve
for different sizes are used as in figure 1.

case of q = 3. Let us denote the number of each component per spin as nA,B
i (i = 1, 2, 3); then

0 � ni � 1/2 and mi = nA
i − nB

i (20)

where the staggered magnetizationmi is given in equation (2). We show the distribution func-
tion of nA,B

i for L = 8, 10, 12, 14 and 16 in figure 9. The same types of curve for different
sizes are used as in figure 1. The distribution is sharper for larger sizes. In plotting the data
in figure 9, we have chosen component 1 and sublattice A such that nA

1 is the largest. The
distribution function P(nA,B

i ) is normalized such that∫
P(n

A,B
i ) dnA,B

i

is independent of the size. For the typical BSS states, we expect the δ-function distribution for
sublattice A, P(nA

1 ) = δ(nA
1 −1/2), P(nA

2,3) = δ(nA
2,3); P(n

B
2 )+P(nB

3 ) becomes the Gaussian
distribution around 1/4 and P(nB

1 ) = δ(nB
1 ) for sublattice B. Our results shown in figure 9

are close to those of the typical BSS states, but we can see a clear deviation from the typical
BSS states and the size dependence. In other words, there are many configurations other than
the typical configurations of the BSS state. Similar behaviour is also obtained for the ground
states of higher-state Potts models. The deviation from the typical BSS states becomes larger
for higher q.
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5. Summary and discussions

To summarize, we have applied a newly proposed Monte Carlo algorithm, the Wang–Landau
algorithm [24], to the study of the three-dimensional AF q-state Potts models. We obtain
the finite-temperature phase transition for q = 3 and 4, whereas the transition temperature
is down to zero for q = 5. For q = 6 there exists no order for any temperature. We also
study the ground-state properties. From the analysis of the size dependence of the ground-state
entropy, we find that the ground-state entropy is larger than the contribution from the typical
configurations of the BSS state for q = 3. The same situations are found for q = 4, 5 and 6.

We have confirmed again the efficiency of the Wang–Landau algorithm. For the study
of only the critical phenomena near the critical point, other methods may have advantages.
However, in order to make a systematic study for the whole energy space, we can treat larger
systems by using the Wang–Landau algorithm, especially for higher-q-state Potts models.

In the present paper we have studied the ground-state entropy for the three-dimensional
AF Potts models. We had better mention that the accurate estimate of the nonzero ground-state
entropy is easily obtained for the two-dimensional AF Potts models, of course; the obtained
data are consistent with the previous studies [13]. It is also interesting to apply the Wang–
Landau algorithm to the systematic study of both the ground-state properties and the phase
transitions for more complicated systems, such as spin glass problems.
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